Design of Fast Real Time Controller for the Dynamic Voltage Restorer Based on Instantaneous Power Theory
Mohammed Y. Suliman,
Sameer Sadoon Al-Juboori
Issue:
Volume 5, Issue 2-1, March 2016
Pages:
1-6
Received:
13 August 2015
Accepted:
14 August 2015
Published:
12 October 2015
Abstract: The fast variations in the source voltage can affect the performance of the loads such as (a) semiconductor fabrication plants (b) paper mills (c) food processing plants and (d) automotive assembly plants. The common disturbances in the source voltages are the voltage sags or voltage swells this can be due to (i) disturbances arising in the transmission system, (ii) adjacent feeder faults and (iii) fuse or breaker operation. Voltage sags of 10% lasting for 5-10 cycles can result in costly damage in the loads. To mitigate the problems of poor quality power supply, voltage source converters can be connected in series with transmission lines as compensators. These are known as Dynamic Voltage Restorer (DVR) or Static Voltage Restorer. In this paper, a new scheme to control DVR using adaptive neuro fuzzy logic is proposed. In this controller, Takagi-Sugeno fuzzy rules are trained using off-line neuro fuzzy system. Also, instantaneous power theory is used to calculate the phase voltage due to its high accuracy and less computation. The simulation and practical results show that real time application of the proposed controller is possible and robust compared to conventional controllers previously investigated. The experiment results obtained using the dSPACE data acquisition system and Matlab real time toolbox.
Abstract: The fast variations in the source voltage can affect the performance of the loads such as (a) semiconductor fabrication plants (b) paper mills (c) food processing plants and (d) automotive assembly plants. The common disturbances in the source voltages are the voltage sags or voltage swells this can be due to (i) disturbances arising in the transmi...
Show More
Modelling the Effects of Climate Change on Hydroelectric Power in Dokan, Iraq
Petter Pilesjo,
Sameer Sadoon Al-Juboori
Issue:
Volume 5, Issue 2-1, March 2016
Pages:
7-12
Received:
27 August 2015
Accepted:
28 August 2015
Published:
12 October 2015
Abstract: Due to shift in the average patterns of weather, climate change became one of the significant development challenges. Hydropower is currently being utilized in more than 150 countries, including 11,000 stations with 27,000 generating units. Increasing attention has been paid to hydropower generation in recent years, because it is renewable energy. Temperature and precipitation effects from global climate change could alter future hydrologic conditions in Iraq and, as a result, future hydropower generation. This is also valid for the Middle East and Iraq. The aim of this study (part1) is to evaluate potential climate change impacts on hydropower in Dokan region, and to recommend various options to maintain optimum required water level to ensure full capacity of electricity generation throughout the year. A simple approach assumes that hydropower systems will reduce generation if water supply reduces, and vice versa. The analysis of the approach was carried out to convert changes in water resource availability to changes in electric hydropower generation. By the year 2050 and based on 12GCMs, electric power generation in Dokan power plant will decrease by 20-40 MW. The other factors such as the site head, the turbine generating capacity and efficiency which were neglected, will be measured, calculated and discussed in part2 of the study.
Abstract: Due to shift in the average patterns of weather, climate change became one of the significant development challenges. Hydropower is currently being utilized in more than 150 countries, including 11,000 stations with 27,000 generating units. Increasing attention has been paid to hydropower generation in recent years, because it is renewable energy. ...
Show More
Optimal Location of Small Hydro Power Plants (SHPPS) at Distribution System by Using Voltage Sensitivity Index
Alaa Abdulwahhab Azeez Baker,
Maamon Phadhil Yasen Al-Kababji,
Sameer Saadoon Al-Juboori
Issue:
Volume 5, Issue 2-1, March 2016
Pages:
13-17
Received:
18 September 2015
Accepted:
21 September 2015
Published:
12 October 2015
Abstract: This work presents a method to enhance the distribution network for both test and real systems by adding small hydro power plants (SHPPS). The voltage sensitivity index (VSI) was used to find the optimal locations to add small hydro power plants (SHPPS). The study has been applied to the system at unity and 0.9 lagging power factor. The test system is a standard IEEE 33-nodes radial distribution network. Maltab program was used to simulate the systems. The simulation results when connecting the (SHPPS) to the test system showed the improvement in voltage profile of the test system nodes in addition to power losses reduction. The reductions of the real and reactive power losses percentage reached (36%) and (14%) at unity power factor respectively, while at (0.9) lagging power factor, the reduction of the real and reactive power losses percentage were found (53%) and (56%) respectively.
Abstract: This work presents a method to enhance the distribution network for both test and real systems by adding small hydro power plants (SHPPS). The voltage sensitivity index (VSI) was used to find the optimal locations to add small hydro power plants (SHPPS). The study has been applied to the system at unity and 0.9 lagging power factor. The test system...
Show More