An Investigation of Wind Characteristics and Techno-Economic Evaluation of Wind Energy in Nigeria
A. Ahmed,
A. A. Bello,
D. Habou
Issue:
Volume 2, Issue 5, October 2013
Pages:
184-190
Received:
8 October 2013
Published:
20 October 2013
Abstract: In this study, wind characteristics and techno-economic analysis in six selected locations in the northern (Jos, Kano, Sokoto and Maiduguri) and southern (Lagos and Enugu) regions of Nigeria using wind speed data at 10m height collected over a period of seventeen years (1990-2006) were analyzed. The techno-economic evaluations of electricity generation from four commercial wind turbine models used for electricity generation located at these sites were evaluated. The wind speed data analysis shows that the sites evaluated are good locations for wind potential in electricity generation from wind. The yearly energy output, the capacity factor and the wind energy cost per unit of electricity generated by the selected wind turbines are calculated. In terms of energy production, the results show that Plateau is best location for harnessing wind power for electricity generation with an average wind power density of 713.95W/m2. The maximum energy output was obtained for De wind 48 turbine model. The capacity factor values are found to vary from a minimum of 21% to maximum of 28% for this research work. The results also shows that the cost per kWh of electricity generation using these turbines is between 0.493 – 0.606$kWh.
Abstract: In this study, wind characteristics and techno-economic analysis in six selected locations in the northern (Jos, Kano, Sokoto and Maiduguri) and southern (Lagos and Enugu) regions of Nigeria using wind speed data at 10m height collected over a period of seventeen years (1990-2006) were analyzed. The techno-economic evaluations of electricity genera...
Show More
Load Frequency Control of Interconnected Hydro-Thermal Power System Using Conventional PI and Fuzzy Logic Controller
Muhammad Ahsan Zamee,
Dipankar Mitra,
Sadaf Yusuf Tahhan
Issue:
Volume 2, Issue 5, October 2013
Pages:
191-196
Received:
8 September 2013
Published:
30 October 2013
Abstract: In industry or any area increasing load is a vast problem for power generation plants due to increase in demand for power. So making balance between generation and demand is the operating principle of load frequency control (LFC). The reliable operation of a large interconnected power system necessarily requires an Automatic Generation Control (AGC). The objective of AGC is to regulate the power output of Generators within a specified area in response to change in the system frequency, tie line power or relation of the two to each other, so as to maintain the scheduled system frequency and power interchange in the other are within the prescribed limits. This paper presents the use of conventional PI controller and artificial intelligence to study the load frequency control of interconnected power system. In the proposed scheme, a control methodology is developed using conventional PI controller and Fuzzy Logic controller (FLC) for interconnected hydro-thermal power system. The control strategies guarantees that the steady state error of frequencies and inadvertent interchange of tie-lines power are maintained in a given tolerance limitations. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of Fuzzy controller and PI controller based approaches shows the superiority of proposed Fuzzy logic controller for step change in loading conditions. The simulation results also tabulated as a comparative performance in view of settling time and peak over shoot.
Abstract: In industry or any area increasing load is a vast problem for power generation plants due to increase in demand for power. So making balance between generation and demand is the operating principle of load frequency control (LFC). The reliable operation of a large interconnected power system necessarily requires an Automatic Generation Control (AGC...
Show More
Exergy Analysis of Omotosho Phase 1 Gas Thermal Power Plant
Egware Henry Okechukwu,
Obanor Albert Imuentinyan
Issue:
Volume 2, Issue 5, October 2013
Pages:
197-203
Received:
3 October 2013
Published:
10 November 2013
Abstract: This paper describes the use of exergy analysis in evaluating the performance of Omotosho Phase I Gas Thermal Power Plant. The data used were obtained from data record book. The exergy analysis, mass and energy conservation laws were applied to each component. Results obtained show that the gas turbine had the largest exergy efficiency of 96.17%, while that of the total plant was 41.83%, the combustion chamber had the largest exergy destruction of 54.15% while that of the total plant was 58.17%.In addition, the effect of the gas turbine load variation and ambient temperature from 210C – 330C are investigated. The exergy efficiency decreases and exergy destruction efficiency increases as ambient temperature increases in the plant and its components. Therefore, turbine air inlet cooling system is recommended for the plant to solve this problem.
Abstract: This paper describes the use of exergy analysis in evaluating the performance of Omotosho Phase I Gas Thermal Power Plant. The data used were obtained from data record book. The exergy analysis, mass and energy conservation laws were applied to each component. Results obtained show that the gas turbine had the largest exergy efficiency of 96.17%, w...
Show More